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Relative Precision of Ability Estimations in Polytomous CAT:
A Comparison under the Generalized Partial Credit Model and Graded Response Model

Abstract

The purpose of this Monte Carlo (MC) study was to evaluate the relative accuracy of

Warm's weighted likelihood estimate (WLE) compared to maximum likelihood estimate (MLE),

expected a posteriori estimate (EAP), and maximum a posteriori estimate (MAP), using the

generalized partial credit model (GPCM) and graded response model (GRM) under a variety of

computerized adaptive testing conditions. In general, for all four 0 estimation methods,

conditional and overall bias, standard error (SE), and root mean square error (RMSE) decreased

as test length, test reliability, and item bank size increased. The magnitudes of the differences

among the dependent variables decreased as the values of independent variables increased. For

both models, WLE outperformed MLE in terms of all the dependent variables studied, and WLE

performed better than the Bayesian methods in terms of bias. MLE had less bias than both

Bayesian methods. In general, for the fixed test length, both the GPCM and GRM models,

estimation method and test length had some impact on bias, SE, and RMSE. But, the model

factor had the greatest impact on RMSE, accounting for 31.2% of the total variance of RMSE

under the GRM. For the fixed test reliability, practically, the model factor had almost no

influence on bias, SE, and RMSE under GRM.

Index terms: computerized adaptive testing, ability estimation methods, polytomous responses,

item response theory.
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Introduction

Computerized adaptive testing (CAT) using dichotomously scored item response models,

such as Rasch or 1-PL, 2-PL, and 3-PL logistic models, are now found in many high-stakes

educational and professional assessment programs. However, in practice, there are few CAT

applications that have been based on items with the more "nature" format of using polytomous

models, such as Samejima's (1969) graded response model (GRM), Muraki's (1992) generalized

partial credit model (GPCM), Master's (1982) partial credit model, Bock's (1972) normal model,

Andrich's (1978) rating scale model, et al. In some situations, given the richer and more realistic

form of assessment of polytomously scored items compared to that of dichotomously scored

items, the CAT with polytomously scored items could be a more valid and reasonable choice. In

general, advantages of a polytomous model are: (a) the amount of item information provided by

a polytomously scored item is greater than that from a dichotomously scored item (Baker, 1992;

Bock, 1972; Sympson, 1983; Thissen & Steinberg, 1984, Samejima, 1969); (b) the rate of

detecting mismeasured examinees using a polytomously scored item is greater than it is when

using a dichotomously scored item. However, polytomous CATs are not widely used in

educational and professional testing settings because machine scoring of polytomous items is

still difficult to achieve. Recently, researches (Kukich, 2000; Yong, Buckendahl, Juszkiewicz, &

Bhola, 2002) in computer scoring of open-end format items has shown new hope for the

polytmous item-based CAT.

In CAT, an examinees ability is estimated after each item response is given. The ability

estimates not only affect the final outcome of testing, but also determine which item is to be

selected at each CAT stage. Four IRT-based ability estimates have been popular in CAT

research and applications in the past: (a) Warm's weighted likelihood estimate (WLE), (b)

maximum likelihood estimate (MLE), (c) expected a posterior estimate (EAP), and (d) maximum

a posterior estimate (MAP). Previous studies (Bock & Mislevy, 1982; Wang & Vispoel, 1998;
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Weiss & McBride, 1984; Wang, 1995; Wang, Hanson & Lau, 1999; Wang, 1999; Wang &

Wang, 2001) have shown that the Bayesian methods, such as EAP and MAP, are severely biased

toward the mean of the prior distribution and are thus unacceptable to many standardized testing

programs. MLE was found to have smaller bias in the opposite direction to that of the Bayesian

methods, (i.e., low ability examinees are negatively biased and high ability examinees are

positively biased), but have a notably larger standard error (SE) than the Bayesian methods.

Warm (1989) found that for 2- and 3-parameter IRT models, WLE was less biased than either

MLE or the Bayesian methods. Wang and Wang (2001) showed that for Muraki's (1992)

generalized partial credit mode (GPCM), WLE has better precision than MLE when the GPCM

for fixed test length CAT was used in the CAT environment. It was also found that WLE and

MLE have smaller bias but larger SE than both EAP and MAP, which is consistent with the

previous finding. Samejima (1998) adopted Warm's approach, expanded it to the polytomous

models, and formulated it with the graded response model (GRM). Wang, Hanson and Lau

(1999) and Wang & Wang (2001) demonstrated that Warm and Samejima's approach is a special

case of a general approach proposed by Firth (1993) which has a more rigorous theoretical basis.

The GPCM and GRM models are the two most commonly used IRT models for

polytomously scored items. Both models have item discrimination parameters, but GRM is a

`difference model' and the GPCM is a 'divide-by-total model' (Thissen & Steinberg, 1986). The

two models differ in that, with GPCM, the value of the item category parameters are not

necessarily in successive order as are those of the graded response model.

A few studies have examined the relative precision of those four ability estimation

methods using different polytomous IRT models (Gorin, Dodd, Fitzpatrick, & Shieh, 2000;

Wang, 1999; Wang & Wang, 2001). In particular, Wang and Wang (2001) systematically

compared all four estimation methods under the GPCM model. However, no study has

systematically compared the four ability estimation methods under the GRM and no study has

5



5

made the comparison between the GRM and GPCM models under a similar set of conditions.

The present study not only extends the Wang and Wang (2001) finding to the GRM model, but

also makes some comparisons between the two models. It should be noted that the error indices

under the two models cannot be compared in a strict sense because their trait scales are slightly

different. Thus, the two models can only be compared in a general sense. For example, they can

be examined if the relative precision of the ability estimation methods is consistent across the

two models. The comparison may also provide some guidelines to practitioners about which

model they should use when implementing CAT.

Objectives

The purposes of this paper are: (a) Evaluate the relative precision (bias, SE, RMSE and

others) of four ability estimation methods: Warm's weighted likelihood estimate (WLE),

maximum likelihood estimate (MLE), expected a posterior estimate (EAP), and the maximum a

posterior estimate under two polytomous models in CAT; and (b) Compare the ability

estimations of two polytomous models: the generalized partial credit model (GPCM) and the

graded response model (GRM) under various computerized adaptive testing (CAT) conditions.

Method and Data

A Monte Carlo simulation method was used to evaluate the ability estimation

methods used by the two polytomous models in this study. Both real item bank consisting of 263

polytomously scored 1996 NEAP science items (Allen, Carlson, & Zelenak, 1999) and a

simulated item bank were used for this study. The item bank was originally calibrated using the

GPCM model. To construct the item bank using the GRM model, item responses for the entire

item bank were generated for a large sample of simulees from a normally distributed population.

The response data were then calibrated using the GRM model using PARSCALE. Three items

were deleted from the calibration process due to poor fit, thus reducing the bank size to 260

items for the GRM model. These item parameters are treated as true item parameters in the
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simulation study. The items in the two smaller banks are randomly drawn from the larger bank

containing 260 items. Tables 1 and 2 show the descriptive statistics for the item parameter

estimates of three item banks under the generalized partial credit model and graded response

model. The simulations were conditioned at 21 true ability values ranging from -4.0 to 4.0 by

increments of 0.4 for both the GPCM and GRM. A CAT was simulated for 500 simulees at each

of the 21 ability parameter points. A maximum-information item selection procedure was used.

Effects of independent variables, size of item banks (260, 66, and 33), test termination rules

(fixed test length and fixed test reliability), estimation methods (WLE, MLE, EAP, and MAP),

and polytomous IRT models (GRM and GPCM) were examined by using both descriptive and

inferential procedures. The dependent variables were bias, standard error (SE), root mean square

error (RMSE), fidelity (correlation of estimated and true ability parameters), and administrative

efficiency (the mean numbers of items needed to reach a criterion SE level).

Conditional Error Indexes:

N A

Bias(9) = 0) ,
r=1

SE(A) =

2

1 N [A 2-6' 1
er

RMSE(0) = (Or 0)2
N r=1
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where 0 is the true ability of simulees, which was used to generate responses in the simulation,

Or is the estimated ability for the rth replication, and N is the number of replications. The

number of replications in this MC study is the analogue of sample size. Because the primary

goal is to assess the relative accuracy of the ability estimation methods, the significance of a

statistic is tested and the empirical sampling distributions for the statistics are generated. In

order to minimize the sample variance and increase the power to detect the effects of interest, a

large number of replications are desired. In this study, relative accuracy is assessed by

comparing the differences between the ability parameter estimates and the true ability across

replications. In such a study, 500 replications are considered sufficient (Stone, 1993). The

RMSE can be separated into two components, Bias and SE (RMSE2 = Bias2 + SE2).

Overall Error Indexes:

21

AVERAGEBias = 1,IBias(e) HO; * weight(0; ),
i=1

21

AVERAGESE = SE2 (0)I0; * weight(0; ) ,

21

AVERAGERMSE= RMSE(6)10; * weight(0; ),
i.1

where the weight(0i) are quadrature weights based on the standard normal distribution, and the 0;

are the 21 equally spaced true ability levels that range from -4 to 4 in increments of 0.4.

Four experimental designs were used in the analyses of the overall indices. For the fixed-

length tests, 4 0 estimation methods x 3 bank sizes x 4 test lengths and 4 0 estimation methods x

4 test lengths x 2 models completely crossed analysis of variance (ANOVA) designs were used.

For the fixed reliability tests, a 4 0 estimation methods x 3 bank sizes x reliability levels and a 4

0 estimation methods x 3 reliability levels x 2 models completely crossed analysis of variance

(ANOVA) designs were used.

8
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Results

Conditional Indices

Figures 1 through 3 show the bias, SE, and RMSE of four ability estimates of fixed test

length of 10 items under both models. It can be seen that the WLE has the smallest absolute bias

and less SE over almost the entire ability range among all the methods for both GRM and

GPCM. Both WLE and MLE have considerably less bias than the two Bayesian methods for

both models. Both models have approximately the same precision patterns along almost all

ability levels for both fixed test length CATs, although they are not strictly comparable.

Insert Figures 1 to 3 about here

Figures 4 through 6 show the bias, SE, and RMSE of four ability estimates of fixed test

reliability for 0.9 under both models. First, for both models, WLE and MLE have remarkably

smaller bias than EAP and MAP, especially at both extreme ability levels. Second, for both

models, all methods show the same amount of SE. And last, for both models, WLE and MLE

have smaller RMSE than EAP and MAP. In general, there is no large difference in bias, SE, and

RMSE between GPCM and GRM.

Insert Figures 4 to 6 about here

In general, the results of the graded response model agreed with those for the generalized

partial credit model (Wang & Wang, 2001).

9
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Overall Indices

Table 3 summarizes the results of the three-way ANOVA of absolute bias, SE, and RMSE

(averaged across 0 levels) for the fixed test length and fixed reliability termination conditions

under the graded response model. In general, the results for the overall indices further support

the results of conditional indices for both models. For the GRM, 0 estimation methods and the

fixed test length termination rule accounted for 27.5% and 29.3% of the total variance of

absolute bias and had the largest influence on absolute bias. In comparison, for the GPCM, the 0

estimation methods had the largest influence on absolute bias (Wang & Wang, 2001). 0

estimation methods for the fixed reliability termination conditions under the GRM had the

largest influence on absolute bias, accounting for 80.5% of the total variance of absolute bias.

This result matches the result of the GPCM. Like the GPCM, the fixed test length termination

rule and fixed test reliability termination rule under the GRM had the largest influences on

RMSE, accounting for 51.1% and 90.9% of total variance of RMSE.

Table 4 provides the results of the three-way ANOVA of absolute bias, SE, and RMSE

(averaged across 0 levels) for the fixed test length termination and fixed reliability condition

under both models. Instead of testing the effect of bank size, the model's effect as one of the

three factors (method, test length, and model), was tested.

For fixed test length termination conditions, all main effects of method, test length, and

model on absolute bias, SE, and RMSE were statistically significant. Although, the model factor

only accounted for 4% and 6.9% of the total variances of bias and SE, it accounted for 31.2% of

the total variance of RMSE. All interaction effects for bias, SE, and RMSE are not statistically

significant at the 0.01 level except for interaction between method and test length for SE and

RMSE. 0 estimation methods had the greatest influence on absolute bias, accounting for 31.8%

1 :0
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of the total variance of absolute bias; test length had the greatest influence on SE, accounting for

51.5% of the total variance of SE.

For the fixed test reliability termination condition, all of the main effects of method, test

reliability, and model on absolute bias, SE, and RMSE were statistically significant at the 0.01

level except for the effect of model on SE. For bias, the three-factor interaction was not

significant and all three two-factor interactions were significant. For SE and RMSE, all two-

factor and three-factor interactions were not statistically significant. Again, 0 estimation methods

had the greatest influence on absolute bias, accounting for 76.7% of the total variance of absolute

bias; test reliability had the greatest influence on SE and RMSE, accounting for 54.7% of the

total variance of SE, and for 88.5% of the total variance of RMSE.

Summary and Discussion

This study examined the relative precision of four ability estimation methods (WLE, MLE,

EAP, and MAP) under two polytomous models (GPCM and GRM) in the CAT environment, and

comparisons of relative precision between GCPM and GRM were provided. In general, for all

four 0 estimation methods, conditional and overall bias, SE, and RMSE are decreased as the test

length, test reliability, and item bank size increased. The magnitudes of the differences among

the dependent variables decreased as the values of independent variables increased. For both

models, WLE outperformed MLE in terms of all the dependent variables studied, and WLE

performed better than the Bayesian methods in terms of bias. The MLE had less bias than both

Bayesian methods. Both EAP and MAP showed more favorable results with SE and fidelity than

did either the WLE or MLE; EAP performed better than MAP for almost all conditions.

Different test termination rules had significant impact on those dependent variables for given

ability estimation methods, especially for the WLE and MLE methods. Although the quality of
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item banks has vast effects on the conditional distribution of bias, SE, RMSE, and test efficiency

(Wang & Vispoel, 1998), the item bank size had less impact on the differences among the

dependent variables than did the test termination rules. This study confirms Warm's conclusions

that (a) WLE is unbiased to first order for fixed test length termination, while MLE, EAP, and

MAP are biased, and (b) the WLE method has small variance over the entire range of 8 for fixed

test length CAT testing.

In general, for the fixed test length, for both GPCM and GRM models, the estimation method

and test length had the same impact on bias, SE, and RMSE. But, the model factor had the

largest impact on RMSE, accounting for 31.2% of the total variance of RMSE under GRM. For

the fixed test reliability, the model factor had almost no influence on bias, SE, or RMSE under

GRM.

As CAT with polytomous models can be applied to a variety of polytomously scored items,

and can be implemented in more and more testing programs, the search for a sound ability

estimation method with a particular polytomous IRT model becomes increasingly important.

MLE has been widely used in many CAT programs due to its having less bias. The present

study shows that under both GRM and GPCM, for the fixed test length rule, WLE not only

reduced the bias of MLE to almost zero, but reduced its SE as well. As computer scoring for

polytomously scored items becomes more of a reality, the results of this study will have greater

practical significance.
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Table 1
Descriptive Statistics for the Estimates of Item Parameters of the Three Item Banks,

1GPCM, 2GPCM, and 3GPCM, under the Generalized Partial Credit Model

Bank/
Parameter

No.
Items Mean Median S.D. Minimum Maximum

1GPCM 263

a 0.549 0.522 0.229 0.105 1.871

bi 0.713 0.720 2.011 -6.972 11.746

b2 1.270 1.264 2.640 -17.381 13.926

b3 1.034 1.004 2.371 -6.369 7.187

b4 0.822 0.822 2.546 -3.159 4.924

2GPCM 66

a 0.539 0.527 0.171 0.171 1.200

b1 1.066 1.000 1.728 -3.204 7.399

b2 1.679 1.491 2.519 -2.665 13.926

b3 1.832 1.412 1.656 -0.856 5.506

b4 4.270 4.270 0.535 0.535 4.925

3GPCM 33

a 0.560 0.523 0.190 1.90 1.055

b1 0.752 0.631 1.384 -2.738 3.437

b2 1.695 1.684 2.495 -3.638 7.293

b3 1.467 1.680 3.480 -6.369 7.187

b4 2.000 2.000 0.000 2.000 2.000
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Table 2
Descriptive Statistics for the Estimates of Item Parameters of the Three Item Banks,

1GRM, 2GRM, and 3GRM, under the Graded Response Model

Bank/
Parameter

No.
Items Mean Median S.D. Minimum Maximum

1GPCM 260

a 0.658 0.668 0.347 0.180 2.206

b1 -0.889 -0.568 2.066 -20.105 3.066

b2 1.496 1.163 2.245 -9.962 10.627

b3 1.837 1.941 3.475 -17.578 12.767

134 2.033 2.096 1.500 -0.158 4.312

2GPCM 66

a 0.620 0.647 0.273 0.074 1.098

b1 -0.834 -0.620 1.385 -5.565 3.066

b2 1.590 1.108 2.291 -3.079 8.627

b3 2.184 2.140 1.229 0.600 4.312

134 3.072 3.072 0.000 3.072 3.072

3GPCM 33

a 0.678 0.693 0.333 0.065 1.301

b1 -0.980 0.803 1.594 -6.853 2.688

b2 1.374 1.125 1.683 -1.390 5.446

b3 1.703 1.164 1.639 0.304 5.231

ha 2.096 2.096 0.000 2.096 2.096
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